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A B S T R A C T   

Purpose: To validate our previously proposed method of quantifying amyloid-beta (Aβ) load using nonspecific 
(NS) estimates generated with convolutional neural networks (CNNs) using [18F]Florbetapir scans from longi-
tudinal and multicenter ADNI data. 
Methods: 188 paired MR (T1-weighted and T2-weighted) and PET images were downloaded from the ADNI3 
dataset, of which 49 subjects had 2 time-point scans. 40 Aβ- subjects with low specific uptake were selected for 
training. Multimodal ScaleNet (SN) and monomodal HighRes3DNet (HRN), using either T1-weighted or T2- 
weighted MR images as inputs) were trained to map structural MR to NS-PET images. The optimized SN and 
HRN networks were used to estimate the NS for all scans and then subtracted from SUVr images to determine the 
specific amyloid load (SAβL) images. The association of SAβL with various cognitive and functional test scores 
was evaluated using Spearman analysis, as well as the differences in SAβL with cognitive test scores for 49 
subjects with 2 time-point scans and sensitivity analysis. 
Results: SAβL derived from both SN and HRN showed higher association with memory-related cognitive test 
scores compared to SUVr. However, for longitudinal scans, only SAβL estimated from multimodal SN consistently 
performed better than SUVr for all memory-related cognitive test scores. 
Conclusions: Our proposed method of quantifying Aβ load using NS estimated from CNN correlated better than 
SUVr with cognitive decline for both static and longitudinal data, and was able to estimate NS of [18F]Florbe-
tapir. We suggest employing multimodal networks with both T1-weighted and T2-weighted MR images for better 
NS estimation.   

Introduction 

Dementia is the fifth leading cause of death worldwide with 
increasing mortality rates for all age groups due to the ageing population 
[1]. In the US, deaths from Alzheimer’s Disease (AD) has increased by 
146.2% between 2000 and 2008, with an estimated US$305 billion of 
healthcare burden and 18.6 billion hours of care placed on family 

members and caregivers. The increasing burden of AD means that 
methods for early detection and prevention or delay of AD are important 
[2]. In June 2021, the food and drug administration (FDA, US) has 
approved Aducanumab (Aduhelm, Biogen Inc. Cambridge, Massachu-
setts US), an amyloid-beta (Aβ)-directed antibody, to treat AD [3]. 
Measuring amyloid plaque burden is a key capability of positron emis-
sion tomography (PET), with Aβ-targeting radiotracers, and will play a 
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central role in identifying patients and monitoring treatment efficiency. 
The common method to quantify the Aβ burden from static PET scans 

is the standardized uptake value ratio (SUVr). This Aβ-biomarker is 
derived by normalizing the Aβ-PET tracer uptake in AD-targeting re-
gions with a reference region known to be devoid of Aβ [4]. Target and 
reference regions are usually derived from the structural magnetic 
resonance (MR) images of the subject or using generic ROIs derived 
using linear regression [5], principal component analysis (PCA) [6,7] or 
deep learning (DL) [8]. A cut-point is then computed and used to classify 
subjects into Aβ+/-. This cut-point strongly depends on the data sam-
ples, the cohort characteristics, Aβ-PET radiotracers, image acquisition 
PET systems and methods employed to derive the cut-points [9]. For 
these reasons, cut-points are hardly comparable between Aβ-PET 
studies. To overcome the issues of applying different Aβ-positivity cut- 
points for different Aβ-PET radiotracers and scanners, the Centiloid 
Working Group developed the Centiloid scale to map the measured SUVr 
values to a standard 0 to 100 scale but it requires normalization of im-
ages to Montreal neurological institute (MNI) space [10]. 

To overcome the reliance on MR images to derive SUVr, several 
authors have proposed to derive SUVr without structural MR images by 
creating an adaptive template in MNI space using linear regression [5], 
principal component analysis (PCA) [6] or deep learning (DL) [8]. 
Whittington et al. proposed a new biomarker AβL to quantify Aβ burden 
by modelling SUVr as a linear combination of nonspecific (NS) and 
specific binding (combination of maximum carrying capacity and Aβ 
load) [11]. Other authors relied on PCA to create adaptive templates in 
MNI space to quantify Aβ burden in terms of Aβ index [12], SAβL [7] and 
AMYQ index [13]. However, all these methods require the trans-
formation of PET images to MNI space. 

Convolutional neural networks (CNNs) showed potential in various 
medical imaging applications [14–17], such as improving image quan-
tification by correcting for attenuation of PET images [15,17,18] or 
recovering image quality from low-quality or low-dose PET or CT images 
[14,15,19]. We have previously proposed a new method of quantifying 
Aβ burden by using CNN, or more specifically DL, to estimate the NS 
uptake from structural MR images and calculating specific Aβ load 
(SAβL) by subtracting NS from SUVr images. This method does not 
require the transformation of PET images to MNI space and the new 
biomarker, SAβL showed an increased association with cognitive and 
functional test scores by up to 67% compared to SUVr using [11C]PiB 
[4]. However, different PET radiotracers exhibit different NS binding to 
myelin and accuracy may be dependent on the quality of the MR images. 
Moreover, it has not been validated for longitudinal data. As such, we 
further validated the method using [18F]Florbetapir and multicentre 
study data with longitudinal scans. Sensitivity analysis was also per-
formed to determine the effect of the choice of inputs on the NS esti-
mated from CNN. 

Materials and methods 

Image selection and processing 

Data used in this study were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). T1- 
weighted Magnetization Prepared - RApid Gradient Echo (MPRAGE) 
and T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR) MR im-
ages and the corresponding [18F]Florbetapir PET images, acquired 
within one year from the MR images were downloaded from the ADNI3 
database (2016 to 2021). All images were first visually assessed to 
ensure consistency in textural information across scans, particularly 
between time-points scans of the same subjects. MR images with obvious 
inhomogeneity, image artefacts, and failed segmentation, and PET im-
ages with motion artifacts or containing too much noise were removed 
from the study (Refer to Supplementary Fig. 1 for some examples). A 
total of 188 scans (139 subjects) with 35 ± 53 days between PET and MR 
scans, were selected for this study and the subjects’ demographics are 

shown in Table 1. Among the 139 subjects, 49 subjects had 2 scans, 
acquired 2.1 ± 0.3 years apart. 

The PET images were post-processed to a standard matrix of 160 ×
160 × 96 with a voxel size of 1.5 mm3, with intensity normalization and 
post-filtering to ensure uniform resolution. Both T1-weighted MPRAGE 
and T2-weighted FLAIR MR images were registered to the PET images, 
and segmented to obtain the brain masks and regions of interest (ROIs) 
using statistical parametric mapping (SPM12, https://www.fil.ion.ucl. 
ac.uk/spm/). Intensity normalization was then performed on both MR 
images using subject-specific brain mask such that the average of voxels 
within the mask is exactly one. The PET images were then converted to 
standardized uptake value ratio (SUVr) images using the whole cere-
bellum as a reference region. The ROI mask included the main AD- 
specific regions of the frontal lobe, parietal lobe, temporal lobe, and 
precuneus and was used to derive the global mean SUVr value in the 
whole brain (WB) and gray matter (GM). 

Clinical diagnosis, neuropsychological and functional assessments 

The clinical diagnosis was assessed at each visit: 101 cognitive 
normal (CN), 17 significant memory concern (SMC), 31 early mild 
cognitive impairment (EMCI), 29 MCI, 8 late MCI (LMCI) and 2 AD, with 
no change in clinical diagnosis on the second scan for all 49 subjects 
with 2 scans (Table 1). A total of 17 key variables were extracted from 
the 7 neuropsychological and functional assessment tests: (1) Alz-
heimer’s Disease Assessment Scale (ADAS): TOTSCORE (11 items score) 
and TOTAL13 (13 items score), (2) Clinical Dementia Rating Scale 
(CDR): CDMEMORY (memory), CDORIENT (orientation), CDJUDGE 
(judgement & problem solving), CDCOMMUN (community affairs), 
CDHOME (home and hobbies), CDCARE (personal care), CDGLOBAL 
(Global CDR), and CDSOB (CDR sum of boxes), (3) Functional Activities 
Questionnaires (FAQ): FAQTOTAL, (4) Mini-Mental State Examination 
(MMSE): MMSCORE, (5) Montreal Cognitive Assessment (MoCA): 
MoCA, (6) Neuropsychological Battery: LIMMTOTAL (immediate recall 
total score) and LDELTOTAL (delayed recall total), and (7) Neuropsy-
chological Summary Scores: ADNI_MEM (Memory function composite 
score) and ADNI_EF (Executive function composite score). 

Nonspecific Aβ uptake image estimation using deep learning 

Our previous results showed that multimodal ScaleNet [20] per-
formed best in estimating the NS uptake from both T1-weighted and T2- 
weighted FLAIR images, compared to monomodal HighResNet [21] and 
conditional Generative adversarial networks (cGAN) [2]. In this study, 

Table 1 
Subject clinical diagnosis distribution, age and their MMSCORE (Average ±
Stdev) for all scans, and 49 subjects at baseline and second scans. CN = Cognitive 
normal, SMC = Significant Memory Concern, MCI = Mild cognitive impaired, 
EMCI = Early MCI, LMCI = Late MCI, AD = Alzheimer’s disease.   

CN SMC EMCI MCI LMCI AD 

All Scans 
(n) 

101 17 31 8 29 2 

Age 
(years) 

73.1 ±
6.9 

73.2 ±
3.9 

71.1 ±
4.8 

72.1 ±
8.5 

69.9 ±
8.2 

80.5 ±
2.1 

MMSE 29.0 ±
1.3 

29.4 ±
0.8 

28.8 ±
1.9 

28.8 ±
2.0 

27.6 ±
1.7 

21.0 ±
0.0 

1 TP (n) 26 6 10 4 3 0 
Age 

(years) 
73.2 ±
6.5 

71.8 ±
4.7 

68.9 ±
4.1 

74.8 ±
12.1 

69.3 ±
10.4 

– 

MMSE 28.2 ±
1.1 

29.0 ±
1.1 

28.2 ±
2.3 

30.0 ±
0.0 

28.0 ±
1.7 

– 

2 TP (n) 26 6 10 4 3 0 
Age 

(years) 
75.4 ±
6.5 

74.0 ±
4.3 

70.9 ±
4.1 

76.8 ±
12.1 

71.3 ±
10.4 

– 

MMSE 29.4 ±
0.9 

29.5 ±
0.5 

28.7 ±
2.3 

29.8 ±
0.5 

27.3 ±
2.5 

–  
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we continued to use both ScaleNet (SN) and HighResNet (HRN) net-
works, which can be easily implemented on the NiftyNet platform 
(Version 0.5.0, https://niftynet.io/) [22]. The optimized configurations 
of ScaleNet and HighResNet networks were taken from our previous 
study with adjustment to the spatial window sampling size due to dif-
ferences in image matrix size (Refer to Supplementary Table 2) [4]. 
HighRes3DNet was trained independently using either T1-weighted 
MPRAGE or T2-weighted FLAIR images, while multimodal ScaleNet 
was trained using both MR images to map the structural MR images to 
NS-PET images. The subject-specific brain masks were also input during 
training to provide weighting to the networks. Subject-specific SAβL 
image was then derived by subtracting the estimated NS from SUVr PET 
image (Fig. 1). 

All 188 scans, including second time-point scans, were ranked based 
on the global mean SUVr, with stronger emphasis in GM, as the amyloid 
accumulation in cortical GM is more important in the diagnosing pa-
tients or in quantifying their amyloid burden. The network should be 
trained using preferably subjects with no /low amyloid burden (very low 
SUVr values) to estimate the nonspecific uptake in subjects. Therefore, 
40 subjects with the lowest global mean SUVr in GM were selected for 
training and the next 20 were selected for network validation. These 60 
scans were visually assessed as Aβ- by a research fellow with 3 years of 
experience in interpreting Aβ-PET scans. However, subjects with sub-
stantial differences in global mean SUVr in GM between the 2 time- 
points were excluded from the training dataset, but included in the 
validation dataset. The optimised HighResNet networks, with either T1- 
weighted MPRAGE or T2-weighted FLAIR MR images as input, were 
compared and the best HighRes3DNet and ScaleNet networks were then 
used to generate the NS images for all 188 scans. 

Network performance evaluation 

For direct comparison with our previous results, the same three 

metrics were used to compare the performance of the models in esti-
mating the NS uptakes in the WB and cortical GM of 20 evaluation scans: 
mean squared error (MSE), absolute mean relative error (MRE) and 
structural similarity (SSIM) [2,4]: 

MSE(X, Y) =
1
n
∑n

i=1
(Xi − Yi)

2 (1)  

MRE(%) =

⃒
⃒1

n

∑n
i=1Yi −

1
n

∑n
i=1Xi

⃒
⃒

1
n

∑n
i=1Yi

× 100 (2)  

SSIM(X,Y) =
(
2μxμy + c1

)
•
(
2σxy + c2

)

(
μ2

x + μ2
y + c1

)
•
(

σ2
x + σ2

y + c2

) (3)  

where X and Y refer to the estimated image and ground truth (Y), and μ 
and σ refer to mean and standard deviation. Two constant parameters, c1 
(=0.01L)2 and c2 (=0.03L)2 are included to avoid division with a very 
small denominator; L is the dynamic range of the pixel values based on 
the image class, for example the default dynamic range is 255 for images 
of data type uint8. 

Evaluation of Aβ-PET quantification 

The degree of association of global mean SAβL, derived from High-
ResNet and ScaleNet, and SUVr, with 17 key neuropsychological and 
functional assessment variables, was evaluated using Spearman’s cor-
relation analysis. We hypothesized that the proposed biomarker, SAβL, 
would have stronger association with cognitive tests than SUVr (with 
contamination of NS), especially in subjects with memory concerns and/ 
or cognitive impairment. Hence, association with cognitive tests was 
performed using all subjects, including CN (n = 188), and subjects with 
memory concerns and/or cognitive impairment (n = 87). To investigate 
the use of SAβL estimated using CNN in quantifying Aβ burden for 

Fig. 1. Overview of NS estimation and SAβL derivation workflow: T1-weighted MPRAGE or T2-weighted FLAIR MR images or both are trained to map to NS-PET 
image with subject-specific brain mask as weighting using convolutional networks (ScaleNet or HighResNet) using supervised training. The trained network is then 
used to estimate NS-PET from subject-specific MR images. SAβL image is then derived by subtracting the NS-PET from SUVr PET image. 
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longitudinal studies, the differences in SAβL (HRN), SAβL (SN) and SUVr 
were evaluated using Spearman’s correlation analysis with the differ-
ences in cognitive test scores between the 2 time-points scans. 

Sensitivity analysis of methodology 

Sensitivity analysis was performed by training the optimized net-
works of HighResNet (T1-weighted MPRAGE as input) and ScaleNet 5 
times and randomly replacing 5 subjects from the training dataset with 
that in the validation dataset. The variations in NS measurements and 
the changes in association with the 17 neuropsychological and func-
tional variables were then investigated. 

Results 

Network evaluation 

Table 2 shows the performance evaluation of HighResNet, with T1- 
weighted MPRAGE and T2 weighted FLAIR images used indepen-
dently as input, and ScaleNet, with both MR images as inputs. Perfor-
mance are reported using MSE, SSIM and MRE averaged over the 20 
validation scans (Refer to Supplementary Table 2 for that of 40 training 
scans). HighResNet (T1), yielded the highest SSIM and lowest MSE, 
while HighResNet (T2) yielded the lowest MRE, but performed the 
poorest in terms of SSIM and MSE. ScaleNet, with both MR images as 
input, ranked second in terms of MSE and SSIM, the last for MRE, thus 
showing possibilities of conflicting information between T1-weighted 
MPRAGE and T2 weighted FLAIR images. 

Fig. 2 shows the NS in GM measured from SN (top), HRN with 
MPRAGE as input (middle) and HRN with FLAIR as input (bottom), with 
the corresponding SUVr in GM for all 188 scans. A dip in the SUVr was 
observed at the dashed line separating the scans used for training and 
evaluation. This was due to the selection criterion where subjects with 
big differences in global mean SUVr between the 2 time-points were 
excluded from the training dataset, but included in the validation 
dataset. The cut-point of global mean SUVr in GM, based on ADNI 
protocol is 1.11, derived using the target regions of frontal, anterior/ 
posterior cingulate, lateral parietal, lateral temporal and whole cere-
bellum as reference region [23]. The range of global mean SUVr in GM of 
scans used for training is 0.923 to 1.136, with only 5 out of 40 scans with 
SUVr slightly > 1.11, while that for validation is 0.945 to 1.166, with 
only 4 out of 20 scans with SUVr slightly > 1.11. Although we included a 
few subjects with SUVr values greater than the cut-point, our SUVr 
values were obtained using target regions of the frontal lobe, parietal 
lobe, temporal lobe, and precuneus and whole cerebellum as the refer-
ence region. Moreover, all PET scans used for training were visually 
assessed as Aβ- so there were only a few scans with NS greater than the 
SUVr uptakes, mainly scans used for training and validation, which were 
assumed to contain no or little Aβ. Similar to our previous results, NS 

estimates in GM obtained by ScaleNet and HighResNet for the unseen 
scans showed the same levels and magnitude of intersubject variations 
as with the training scans [4]. This demonstrated the feasibility and 
generalization of the models to estimate NS from structural MR images 
for both [11C]PiB and [18F]Florbetapir. 

Although HighResNet (T2) yielded the lowest MRE in both WB and 
GM, it overestimated the NS for all scans, particularly those used for 
training (Fig. 2). ScaleNet performed the best in our previous study [4], 
thus HighResNet (T1) and ScaleNet were selected for further evaluation. 
The distributions of SAβL (SN), SAβL (HRN) and SUVr across the different 
clinical diagnosis groups can be found in Supplementary Fig. 2. 

Strong Pearson correlations of 0.97 and 0.96 were obtained between 
SAβL (HRN) and SAβL (SN) with SUVr for all 188 scans (Fig. 3a). Simi-
larly, strong correlations of 0.97 and 0.92 were obtained between the 
differences in SAβL (HRN) and SAβL (SN) with the differences in SUVr 
values of 2 time-point scans of 49 subjects (Fig. 3b). 

Association of PET biomarkers with cognition decline and 
neurodegeneration 

SAβL (HRN) and SAβL (SN) showed higher association than SUVr for 
ADNI-MEM, LIMMTOTAL, MOCA, MMSCORE, CDJUDGE, CDORIENT, 
TOTAL13 and TOTSCORE for scans of subjects with memory concerns 
and/or cognitive impairment (Fig. 4). SAβL (HRN) generally yielded a 
higher association than SAβL (SN) except for LIMMTOTAL and 
CDJUDGE. Poorer associations of SAβL (HRN) and SAβL (SN) than SUVr 
were observed with the executive functions-related cognitive test scores, 
namely ADNI_EF, FAQTOTAL, CDHOME and CDCOMMUN. The asso-
ciation (|ρ|) and confidence (P-values) of our proposed biomarker SAβL 
was higher than that of SUVr, and also increased when we focused on 
subjects with memory concerns and/or cognitive impairment (Fig. 4). 
Lower association was observed using the whole study cohort of 188 
scans for SAβL and SUVr (see Supplementary Fig. 3). This was expected 
as amyloid load accumulation is linked to cognition decline. SAβL 
showed higher association than SUVr with ADNI-MEM, LIMMTOTAL, 
MOCA, MMSCORE, CDJUDGE, CDORIENT, TOTAL13, TOTSCORE, 
which better reflects early-AD symptoms of memory/cognitive decline. 

Association of PET biomarkers with cognition decline and 
neurodegeneration for longitudinal data 

To investigate the use of SAβL estimated using CNN in measuring Aβ 
burden changes in longitudinal studies, the differences in SAβL (HRN), 
SAβL (SN) and SUVr were compared with the differences in cognitive test 
scores between the 2 time-points scans as shown in Fig. 5. In general, 
SAβL (SN) showed higher association than SUVr with cognitive decline 
as measured by cognitive test scores of ADNI_EF, ADNI_MEM, LDEL-
TOTAL, FAQTOTAL, CDSOB, CDORIENT, CDMEMORY, TOTAL13 and 
TOTSCORE. However, SAβL (HRN) showed higher association than SUVr 
for only a few variables, namely LDELTOTAL, CDGLOBAL, CDJUDGE, 
CDMEMORY, and TOTSCORE. This may be due to the added informa-
tion from T2-weighted FLAIR images in estimating NS. The better 
biomarker should have higher association between changes in the 
biomarker and changes in cognitive assessments scores. However, the 
association of SAβL and SUVr with cognition decline and neuro-
degeneration appeared poor, which may be due to the larger number of 
cognitive normal subjects (53%) with 2 time-point scans and these 
subjects had slightly improved MMSCORE (Table 1). Only SAβL (SN) 
yielded higher associations (|ρ| > 0.2) and confidence (P-values < 0.2) 
with ADNI_EF, FAQTOTAL and TOTAL13. 

Sensitivity analysis 

The error bars (top and middle) and errors (bottom) in Fig. 6 shows 
the variations in NS of 5 repeated measurements in sensitivity analysis 
and the original estimates. ScaleNet generally yielded higher variations 

Table 2 
Comparison of network performance of HighResNet, with T1 and T2 images as 
inputs, and ScaleNet. (mean ± stdev) using Mean Square Error (MSE), Structural 
Similarity (SSIM) and Mean Relative Error in SUVr (MRE) within the whole 
brain (WB) and gray matter (GM) masks.  

Metric MSE SSIM MRE (%)  

WB GM WB GM WB GM 

HighResNet 
(T1) 

0.034 
±

0.016 

0.027 
±

0.012 

0.826 
±

0.041 

0.824 
±

0.034 

5.492 
±

4.182 

5.598 
±

3.999 
HighResNet 

(T2) 
0.044 
±

0.023 

0.035 
±

0.013 

0.788 
±

0.054 

0.793 
±

0.035 

5.353 
±

4.848 

4.746 
±

4.091 
ScaleNet 0.041 

±

0.027 

0.029 
±

0.015 

0.806 
±

0.041 

0.808 
±

0.037 

6.524 
±

5.472 

5.308 
±

5.049  
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but without any major outliers, as observed for HighResNet demon-
strating that ScaleNet is more consistent in estimating NS due to addi-
tional information from T2-weighted FLAIR. However, the error was 
generally small (<0.08) even though greater amount of NS- 
overestimation was observed for both ScaleNet and HighResNet. 

Fig. 7 shows the average association and the standard deviation of 5 
repeated measurements in sensitivity analysis, as well as the original 
measurement for 87 subjects with memory concerns and/or cognitive 
impairment (For the full cohort, refer to Supplementary Fig. 3). Similar 
to the original results (Fig. 4), both SAβL (HRN) and SAβL (SN) yielded 
higher association than SUVr with ADNI-MEM, LIMMTOTAL, MOCA, 
MMSCORE, CDJUDGE, CDORIENT, TOTAL13 and TOTSCORE, with 
higher variations generally observed for SAβL (HRN) than SAβL (SN). 
Similarly, similar trend was observed for the whole cohort with SAβL 

(HRN) showing greater variations (Supplementary Fig. 3 vs. 4). For 
sensitivity analysis, the better biomarker should have generally higher 
association and confidence than SUVr, despite the changes in the 
training data. Higher associations were observed for the changes in SAβL 
(HRN) and SAβL (SN) for 49 subjects with 2 time-points scans with the 
17 variables measured from neuropsychological and functional assess-
ment tests, but with greater variations observed for SAβL (SN) than SAβL 
(HRN) (Supplementary Fig. 5). 

Discussion 

In this study, we validated our previously proposed method of 
quantifying Aβ burden with NS estimated using DL with multicentre and 
longitudinal [18F]Florbetapir PET scans. Compared to our previous 

Fig. 2. Nonspecific uptake (NS) estimated using ScaleNet (SN) and HighResNet (HRN) with T1-weighted MPRAGE and T2-weighted FLAIR as inputs (Top, middle 
and bottom bar charts), for the whole cohort of 188 scans (40 training and 148 unseen). The red line gives the corresponding SUVr values measured from the actual 
PET scans. Subjects were ordered on the X-axis, on the left if used for training and otherwise on the right of the dashed line, and with increasing SUVr values. Scatter 
Plot shows the specific Aβ load (SAβL) computed for the whole cohort using the NS estimates generated by ScaleNet and HighResNet. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Pearson correlation of (a) SAβL and SUVr of all 188 scans and (b) differences in SAβL and SUVr between the 2 time-point scans of 49 subjects.  
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results, the association of SAβL with cognitive and functional test scores 
was lower but still better than SUVr, particularly for CDORIENT, 
CDJUDGE, TOTSCORE and TOTAL13 test scores for different cohorts 
(subjects with memory concerns and/or cognitive impairment only or 
including normal controls) and longitudinal data, and including 
MMSCORE and MoCA for the different cohorts. CDORIENT was shown 
to be an excellent predictor for the progression from MCI to AD [24] and 
MoCA reflects cognitive reserve better than MMSCORE and was said to 
be a better variable in assessing early cognitive decline [25]. This 
showed that SAβL showed good correlation with memory decline and is a 
better predictor of early stages than SUVr. The lower association ob-
tained in this study with [18F]Florbetapir than our previous study using 
[11C]PiB may be due to lower binding affinity of [18F]Florbetapir to 
Aβ40/42, the use of multicenter data or the study distribution, with 
about 50% cognitive normal subjects (Table 1). However, our results 
showed that our proposed biomarker SAβL yielded higher association 
than SUVr with cognitive scores, particularly those associated with 
early-AD symptoms of memory/cognitive decline. Thus, the proposed 
method can be applied to [18F]Florbetapir and other fluorinated Aβ-PET 
radiotracers, though the network has to be trained for the individual Aβ- 
PET radiotracers independently. 

Our results showed that monomodal HighResNet did not correlate as 

well as multimodal ScaleNet in estimating the NS for the longitudinal 
data. Similar to our previous results, ScaleNet yielded the best associa-
tions with cognitive and functional test scores for [11C]PiB scans of our 
local cohorts with CeVD [4]. This may suggest that T2-weighted FLAIR 
adds new information into the DL network, which helps to improve the 
estimation of NS. The current MRE of less than 7% was greater than our 
previous results of less than 2% [4], but we used more subjects for 
validation in this study (20 vs. 4) and an error of less than 7% in GM is 
still considered small. In addition, sensitivity analysis demonstrated the 
reliability of SAβL (SN) in showing consistent associations with the 17 
variables, measured from neuropsychological and functional assessment 
tests, for the whole cohort, cohorts with memory concerns and/or 
cognitive impairment and in longitudinal data despite the greater vari-
ation observed for longitudinal data. Although SAβL (HRN) generally 
showed the same trend, the variations were huge for different cohorts 
and longitudinal data. We thus suggest using multi-modal ScaleNet to 
estimate the NS of the Aβ-PET radiotracers. 

Study limitations 

For ADNI3 imaging data, attempts have been made to harmonize the 
PET images for more accurate quantification. However, the MR images 

Fig. 4. Association (Spearman’s ρ) and confidence (p-values) of 3 PET biomarkers of the brain Aβ burden with cognition and neurodegeneration for 87 subjects with 
memory concerns and/or cognitive impairment. 

Fig. 5. Association (Spearman’s ρ) and confidence (p-values) of changes in 3 PET biomarkers of the brain Aβ burden with changes in neuropsychological and 
functional assessments scores for 49 subjects with 2 time-points scans. 
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acquired are not always similar in quality both across centres and within 
the centre for longitudinal data. The MR images were visually assessed 
and images that did not meet the selection criteria were removed leading 
to a small sample size of only 188 scans, mainly due to huge variations 
observed in T2-weighted FLAIR images. This limited our evaluation 
using longitudinal data as most of the subjects were cognitive normal 
and the performance of our proposed biomarker SAβL over SUVr in 
detecting changes in Aβ load with cognition decline was not as obvious 
as expected. Although we included scans with SUVr higher than the 
recommended cut-points for training, the networks (SN and HRN- 
MPRAGE) estimated the NS decently well with only a few subjects 
with NS greater than SUVr uptake. For more accurate NS estimation, we 
suggest using PET scans acquired in subjects with very low SUVr values, 
though ideally young healthy volunteers, to ensure that the NS-PET truly 
did not contain any Aβ. MR image post-processing was performed with 

normalization and/or without bias-correction and to ensure consistency 
in data input into the networks for training as we suspect the accuracy of 
our proposed method depends on the quality of the MR images. How-
ever, further bias correction did not improve the network performance 
or NS estimation. 

Conclusions 

Our proposed SAβL derived using NS estimated from DL network 
showed improvement in quantifying the Aβ burden and has stronger 
association with cognitive and functional test scores than SUVr for both 
single or longitudinal data. It also showed good reliability with consis-
tent associations with neuropsychological and functional assessment 
tests in sensitivity analysis. Above all, SAβL yielded higher associations 
than SUVr with cognitive scores that better reflects early-AD symptoms 

Fig. 6. Averaged nonspecific uptake (NS) estimated using ScaleNet (SN) and HighResNet (HRN) with T1-weighted MPRAGE as inputs (Top and bottom bar charts), of 
the whole cohort of 188 scans (40 training and 148 unseen). NS was averaged over 5 repeated networks and the original network. The red line gives the corre-
sponding SUVr values measured from the actual PET scans. Scatter plots shows the standard deviation of NS over 5 repeated measurements and the original NS 
estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Average Association (Spearman’s ρ) and confidence (p-values) of 3 PET biomarkers of the brain Aβ burden with cognition and neurodegeneration for 87 
subjects with memory concerns and/or cognitive impairment averaged over 5 repeated measurements in sensitivity analysis, as well as the original measurement. 
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of memory/cognitive decline of ADNI-MEM, LIMMTOTAL, MOCA, 
MMSCORE, CDJUDGE, CDORIENT, TOTAL13 and TOTSCORE. 
Although our method requires structural MR images, it does not require 
any transformation of PET images to MNI space and can generate 
subject-specific NS and SABL images for better visualization and flexible 
quantification using either population-based or subject-specific atlas. 
Moreover, it can be easily implemented using the open-source NiftyNet 
platform (https://niftynet.io/) and can be set up specifically for 
different datasets or different PET-radiotracers. However, we suggest 
using multimodal networks such as ScaleNet with both T1-weighted and 
T2-weighted images for better NS estimation. 
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